

ANDHRA UNIVERSITY TRANS-DISCIPLINARY RESEARCH HUB

PHYSICS MATERIALS SCIENCE

UNIT 1: Dielectrics

Dielectric polarization and atomic forces-electronic polarization, mechanism of polarization, macroscopic description of the static dielectric constant of materials, the electronic and ionic polarizabilities of molecules. Orientational Polarization, Measurement of dielectric constant of a solid, dielectric breakdown-electric energy stored in dielectrics, the internal field of Lorentz, Clausius-Mosotti relation, dielectric losses and relaxation times, elementary ideas on dipole relaxation.

UNIT 2: Ferroelectrics

Ferroelectrics: General characteristics – piezoelectric, pyroelectric and ferroelectric materials. Classification of ferroelectric crystals and representative materials– BaTiO₃ and its ferroelectric behavior, structure of KDP and explanation for its ferroelectric behavior, spontaneous polarization and theory of spontaneous polarization in BaTiO₃, Dielectric theory of ferroelectricity, ferroelectric hysteresis.

UNIT 3: Magnetic properties

Quantum theory of diamagnetism, Origin of permanent magnetic moment, Theories of paramagnetism, paramagnetic cooling, spontaneous magnetization, Weiss theory of spontaneous magnetization, Nature and origin of the Weiss molecular field, Heisenberg exchange interaction, Hysteresis. The Block wall, Neel's theory of Antiferromagnetism. Ferromagnetism, Ferrite's and their applications (basic concepts only).

UNIT 4: Superconductivity

Superconductors, Occurrence of superconductivity, properties of super conductors, Experimental observations, persistent currents, Effect of magnetic fields, Meissner effect, Type I and Type II super conductors, Elements of BCS theory, Cooper pairs, AC and DC Josephson effects, Superconducting Quantum Interference Devices (SQUID), High temperature superconductors, applications of superconductors.

UNIT 5: Optical Properties

Feynman's vision, nanotechnology and nano science, history of nano materials, concept of nanoparticle, size dependent properties, length scales, classification of nano materials, zero, one, two and three dimensional nanostructures, quantum dots, nano wires, ultra-thin films.

LED materials, liquid crystals, properties and structure, liquid crystal displays, comparison between LED and LC displays.

REFERENCES:

- 1. Applied Physics by Dr.M.Chandra Sekhar & Dr.P.Appala Naidu
- 2. Material science by M.Arumugam
- **3.** Material Science and Engineering: An Introduction by W.D.Callister, John Wiley & Sons,2007
- 4. Materials Science & Engineering V.Raghavan
- 5. Science of Engineering materials C.M.Srivastava and C.Srinivasan
- 6. Introduction to superconductivity AC Rose Innes and EH Rhoderick
- 7. Physics of High T_c superconductors JC Phillips (Academic Press, 1989)
- 8. Goddard III W.A., et. al., (Ed.), Handbook of Nanoscience, Engineering, and Technology, Taylor & Francis Group, 2007.
- 9. Cao, G., Nanostructures and Nanomaterials Synthesis, Properties, and Applications, Imperial College Press, 2004

Modifications Done:

- 1) First unit has been divided into two units by adding some topics to each unit.
- 2) Fourth unit Fiber optics and laser has been deleted.
- 3) New topics regarding Liquid crystals and nanomaterials have been added as fifth unit.

Topics Added	Topics deleted
Unit 1: Dielectric polarization and atomic	
forces-electronic polarization, mechanism of	NIL
polarization, dielectric breakdown-electric	
energy stored in dielectrics.	
Unit 2: Ferroelectrics: General characteristics	
- piezoelectric, pyroelectric and ferroelectric	NIL
materials, theory of spontaneous polarization	
in BaTiO3.	
Unit 3: NIL	NIL
Unit 4: Superconductors, properties of super	Intermediate states, Entropy and heat
conductors, AC and DC Josephson effects,	capacity, energy gap, Isotope effect, Thermal
Superconducting Quantum Interference	conductivity, Theoretical explanations,
Devices (SQUID), High temperature	London's equation, Penetration depth,
superconductors, applications of	Coherence length, Giaver tunneling
superconductors.	Josephson effects (basic ideas)
Unit 5: Feynman's vision, nanotechnology	
and nano science, history of nano materials,	
concept of nanoparticle, size dependent	NU
properties, length scales, classification of	NIL
nano materials, zero, one, two and three	
dimensional nanostructures, quantum dots,	
nano wires, ultra-thin films.	
LED materials, liquid crystals, properties and	
structure, liquid crystal displays, comparison	
between LED and LC displays.	

ANDHRA UNIVERSITY TRANS-DISCIPLINARY RESEARCH HUB

MODEL QUESTION PAPER

MATERIALS SCIENCE

Time: 3hrs

Max Marks: 100

Answer <u>ALL</u> the questions. All carry equal marks (5x20=100)

1. a) what is Dielectric Polarization? Explain the mechanism of polarization and various types of polarization in detail.

OR

b) What is Dielectric Breakdown? Explain how dielectric constant of a solid is measured and obtain Clausius – Mossotti equation.

2. a) what are Ferroelectrics? Explain the structure of $BaTiO_3$ and KDP and their ferroelectric behavior in detail

OR

b) What is Spontaneous polarization? Explain the theory of spontaneous polarization in $BaTiO_3$ and write a note on Ferroelectric hysteresis.

3. a) What is Spontaneous magnetization? Explain Weiss theory of spontaneous magnetization and curie-Weiss law in detail.

OR

b) What is Hysteresis loop for ferromagnetic materials? Explain Neel's theory of

Antiferromagnetism.

4. a) what is Superconductivity? Define Meissner effect and explain types of superconductors with examples.

OR

b) What is Cooper pair? Explain the BCS theory of superconductivity. Give an account on SQUID and its applications.

5. a) What are nano materials? Explain Classification of nano materials and give examples.

OR

b) What are liquid crystals? Explain the structure and properties of Liquid crystals. Give a note on comparison between LED and LC displays.